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Abstract

Density functional theory (DFT) can accurately predict cheal and mechanical properties of nanostruc-
tures, although at a high computational cost. A quasicantm-like framework is proposed to substantially
increase the size of the nanostructures that can be sintuidiénitio. This increase stems from two facts. First,
in order to find approximate ground state electron denshg électronic probler)) expensive DFT calculations
are limited to a small number of subdomains, and the solutdnterpolated everywhere else. Tékectronic
problemembeds interpolation and coupled cross-domain optinarnggchniques through a process called elec-
tronic reconstruction. Second, for the optimization ofleupositions (th@onic problen), computational gains
result from explicit consideration of a reduced number gfesentative nuclei interpolating the positions of the
rest of nuclei following the quasicontinuum paradigm.

In the proposed approach, the new ionic configuration is tiat®n of a nonlinear system obtained as the
first-order optimality condition for the minimization ofetiotal energy associated with the nanostructure. This
is an optimization problem with equilibrium constraintschase the electronic density is itself the solution of
a minimization problem. Numerical tests using the Thormasak-Dirac functional demonstrate the validity of
the proposed framework within the orbital-free densityctional theory.

INTRODUCTION

Nanostructures have dimensions in the rangé ef 100 nm and typically contairi0? ~ 10® atoms. Density
functional methods within the Kohn-Sham approaare typically applied to systems with fewer than 100 atoms.
Contemporary implementations of order-N methosisch as SIESTA ONETEP*, and CONQUESTY that exhibit
linear scaling of computation time with system size enable an increase in the noifnalb@mns by one to two orders

*Address all correspondence to this author.



of magnitude on massively parallel computers. Larger system sizescass#due to classical interatomic potential
methods but these methods cannot account for spin and charge relaaatiaconjugation effects, which are

important in modeling reactions, electronic excitation, and bond breakimggses. Therefore, new computational
paradigms are needed that enable larger scale electronic structulatoasu

A combination of methods with different fidelity is often used to reduce computtesfort if only local infor-
mation is needed with high accuracy. An example of such an approach is\ti@\Dmethod® for computations
of chemical properties. However, such schemes have an inherdsieprovith conditions at the boundaries of
different fidelity regions. Another approach to reduce computatiofatte€alled the quasicontinuum method, is
based on explicit treatment of only representative atoms and on interpsléticthe rest. It has been successfully
used in atomistic studies of mechanical properties with classical potentialsarmbn under development to in-
clude electronic-level calculations. This type of approach is particulaitglde for many nanostructures because
large regions of the structures are perturbed relatively little as compapetitalic structures and, therefore, can
be treated by using interpolation schemes.

The present work proposes a quasicontinuum-like technique that, binglidse spatial scale gap, renders
electronic structure information at the nanoscale. The proposed metlggdollmws in the steps of the quasicon-
tinuum approach discussed'ifi® for mechanical analysis at the nanoscale. Specifically, this is an extesftion
work in&°, because, rather than considering a potential-based interatomic intettheidras a limited range of
validity and is difficult to generalize to inhomogeneous materials, the methodplogpsed useab initio meth-
ods to provide for particle interaction. At the same time it is a generalization ehétieod proposed fhbecause,
rather than considering electron density within each mesh discretization ¢lsepamately, the proposed method
treats the electronic density distribution in all elements in a generic optimizationviamae

Our approach does not rely on a strict periodicity assumption; it merelyraessthat the material displays a
nearly periodic structure in certain regions of the nanostructure. Hawievorder to bridge the gap between sub-
atomic scale associated with the electron density and the nanoscale assweitiated structures investigated, we
have assumed that almost everywhere in the nanostructure the optimiz#drstresults in only small deforma-
tions of periodic structure. This assumption is referred toes-periodicity because the nonperiodic part of the
state variables is approximated as a macroscopic smoothly varying field.pfesred later, theear-periodicity
assumption enables the use of interpolation for electronic structure taation.

Here we define themall deformationthat are present in most of the material. The nanostructure is considered
to have an initial reference configuratiéd® c R?. The structure undergoes a deformation described by a defor-
mation mappingp(r®,¢) € R?, which gives the location in the global Cartesian reference frame of each pdint
represented in the undeformed material frame. As indicated, the mappingdejggrid on time. The variablet
does not necessarily represent the time contemporary with the structigeaomsideration. In a static simulation
framework this variable might be an iteration index of an optimization algorithrsthlaés for the system ground
state.

The components of the deformation gradient are introduced as
0P,
FiJ = ’
87“9

where upper-case indices refer to the material frame, and lower-adisesrio the Cartesian global frame. Thus,
F = Vy ®, whereV, represents the material gradient operator. Using the repeated index sammée, we
express the deformation of an infinitesimal material neighborhe8dblout a point® of D° as

dTi = FiJ d’l”g .

If u = r — rg, the concept of small distortion is equivalent to requiring that the speeitals of F = V u be
sufficiently small; that is,
HVO qu <K

is expected to hold almost everywhere in the donia for a suitable chosen value &f.



With the two assumptions introduced, we anticipate computational savings dutvtoteer interpolation-
based approach that will reduce the dimension of the problem. First, theoglecstructure will be evaluated in
some domains by interpolation using adjacent regions in which a DFT-bapedlaeh is used to accurately solve
the electronic structure problem; this procedure is cadledtronic density reconstructiorsecond, the positions
of the nanostructure nuclei will be expressed in terms of the positionsexfiaced set of so-called representative
nuclei,repnuclei The proposed approach solves only for the positions of tregswiclej the entire deformation
field (mapping) is defined based on an appropriate representatioh(f8r¢). Following the quasicontinuum
paradign¥®, we define this mapping based on the displacemergmfuclei

=Y ¢(r’|RS) &(RY, 1), @)
JeB
whereBB represents the index set associated withréfpauclei Once the displacements of th}pnuclei@(R?}, t)
for J € B are available, the displacement of any point in the nanostructure is obtayriaterpolation using the
shape functiong( - | - ).

THE QUASICONTINUUM APPROACH FRAMEWORK

Finding the stable configuration of a nanostructure (called hereaftéonieeProblen) reduces to minimizing the
total energyF:,: with respect to the positions of the nuclei. More precisely, the equilibriunfigunation of a
nanostructure is provided by that distribution of the nuclei that minimizes thegn

Etot = Ee + Ee:vt + Enna

where E,,,, is the internuclear interaction energy, is the electronic ground-state energy for the corresponding
nuclear distribution, and’..; is the electron-nuclei interaction energy defined as

Eext(ﬁ(r);{RI}) = _/ﬁ(r) e;rt( {RI} HI‘ZijRAH

whereV,(r; {R;}) = Z |ZA" i dr is the ionic potential, which depends on the positions of the n#tei}.

The electronic structure computation is approached here as the solutionmdtaained minimization problem
according to the Hohenberg-Kohn theorémin, E.[p; {R;}], subject tof p(r)dr = N., whereN, represents
the number of electrons present in the system. The solution to this problemdigparametrically on the locations
of the nucleiR;, I = 1,..., M, a consequence of the Born-Oppenheimer approximation. Subsequbatly
optimization of nuclei positions in the entire system is the solutiomof;g,, E[{R;}; p].

Let us consider the optimization problem

min Etot = Ee + Eeact + Enn
{Rr}

subject to the constrairthat for a nuclear configuratiofR ; } the energyFE. is the electron ground-state energy.
Under this assumption, the first-order optimality conditions yield

FK _ aEea:t a-Enn _ 07
ORg  ORg
whereFg, K = 1,..., M, is interpreted as the force acting on nucléisnd

Sy
A=1 B:AﬂHRB_RAH
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This result is proved in the Appendix, and for each nuclgugads to

M

. r— Ry R4 —Rg
Fx = r)—————dr + Ipmm—o—e =0
" /p< )HI’—RKH?’ A:%;#K R4 — Rg[P

which thus allows one to solve the nuclear equilibrium problem by using onlgdhgion of the electron density
problem and not the values and the derivatives of the kinetic and eyetaarergy functionals. Once the electron
density is available, the equilibrium conditioRgc = 0, K = 1,..., M, can be imposed right away. The major
computational consequence of this result is thaw the actual ground state electron dengify) was obtained
is irrelevant there is also no need to have an explicit energy functional of the eled&sityp. Moreover, the
gradient of the energy with respect to the atomic positions at the currettegielensity has the same propétty
Therefore the electron density can be computed with a stand-alone softagitage that requires only the current
atomic positions.

When a local quasicontinuum approach is used, the equilibrium conditiem®mposed only forepnuclej that
is, only forJ € B. The positions of the remaining atoms in the system is then expressed in terraposttions of
therepnuclei Therepnucleibecome the nodes of an atomic mesh, and interpolation is used to recovesitienpo
of the remaining nuclei. Concretely, if the atomic mesh is denotedhy- is an arbitrary cell in this mesh(7)
represents the set of nodes associated withr¢elhdyp;, is the shape function associated with nddm cell 7,

> RLSDL(RA) -Ry
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This effectively reduces the dimension of the problem feoid (the (x, y, z) coordinates of the nuclei), B,

where M., is the number of nodes in the atomic mesh, which is the number of elemefitsThe sum in the

expression oF' ; above is most likely not going to be the simulation bottleneck (solving the electoden for

p is significantly more demanding), but fast-multipole methidds$*4can be considered to speed the summation.
Denoting byP;, i« = 1,..., M,.,, the position of the representative nucleus we can group the set of

nonlinear equations of EqQ. (2) into a nonlinear system that is solved foeklweed configuration of the structure:

£,(P1,Py,...Py,.,) =0
f, (Pl,Pg,. Pu.,) =0

wap(Pl,Pz,- Py,.,) =0

wheref; is obtained based on Eq. (2). The solution of this system is found by a Ndikeomethod. Evaluating
the Jacobian information is straightforward and not detailed here. We raitetiq. (2) a connection is made
back to Eg. (1); the position of an arbitrary nucledsn cell 7 is computed based on interpolation using the
nodes) (), one of many choices available (one could consigenucleifrom neighboring cells, for instance).
Effectively, this provides in Eq. (1) an expression &, ¢), which depends only od € V(7) rather thanJ € B.

THE ELECTRONIC PROBLEM

Theelectronic problennefers to the computation of the ground-state electron density given thi®ps®f nucleiin
the nanostructure. Scaling considerations and accuracy requireraitbshed DFT as the most viable candidate
for handling this task. In a general form, density functional is written as

Eclp] = Tlp(x)] + E"* [p(r)] + E*[p(r)],

whereT[p(r)] is the kinetic energy functionale”"[p(r)] is the electron-electron Coulomb repulsion energy,
and E*¢[p(r)] is the exchange and correlation energy. The ground-state electrsitydsrthe functions(r) that
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minimizesE. [p|+ E.t(p(r); {R}) with respect to the electron density subject to a charge conservatiamaint)s
[ p(r)dr — N = 0, and the requirement that the density stay nonnegative.

The orbital-free DFT (OFDFT) methods (see, for instaf)e,based on the explicit approximations to the
unknown exact functional are attractive as they are numerically eadmmtolate and solve than the most widely
used Kohn-Sham approach (KS-DEBnd there is no need for orbital localization and orthonormalization. Com-
pared to the KS-DFT approaches that typically require the solution oflaneanalgebraic eigenvalue problem, the
OFDFT approaches result in optimization problems based on a methodolagg#ies linearly and is relatively
simple to implement. The main difficulty lies in the quality of approximate functionalseghe exact functionals
are not known. Efforts to find accurate functionals have been quitessful for several simple metal systems.
OFDFT has recently been used in molecular dynamics simulations for aceepedsentation of interatomic forces
in order to reproduce and provide an explanation for calorimetry resua itlusters®, for the studies of several
thousand atoms near a metallic grain boundgrior predict of the dislocation nucleation during nanoindentation
of AlsMg!® used in combination with the quasicontinuum met#ittl and for the metal-insulator transition in a
two-dimensional array of metal nanocrystal quantum tots

Approximations for the exchange and correlation energy functiodialg], are discussed, for instance?in
and??. Providing suitable expressions for the kinetic energy functional rensaihsllenging task and, because of
reduced transferability, is the factor that prevents widespread use apffroach. The simplest explicit functional
is due to Thomas and Ferfii?*

Trrlp) = CF/Pg(r) dr,

whereC’ is a constant. This crude approximation has been improved on by the vosadkaz form of the kinetic
energy functiona®,

1 Vo(r)|?
Towlpl = Trelpl + 5 / |pp<(>)| ar,
which has been further improved &i?728:15

THyb [P] = TvW[p] + Za )\aTa
To = [[p" @ wa(r —1'; p(r)) drdr’

where the functionv, (r — r’; p(r)) is an electron density-dependent kernel that is formulation dependent.

Within the framework of OFDFT for electronic structure computation a modelatiah approach is pursued
that relies on the near-periodicity assumption introduced a36%e The entire domain of interest is first meshed
and divided into subdomains. Using a finite element approach one cagsexpe kinetic, exchange correlation,
Coulomb, and electron-nuclei interaction energies in terms of the value® @ldiotron density at grid points.
Since the bulk of a nanostructure often displays quasiperiodic conditimsall the density grid point values
will be considered as “degrees of freedom”. Instead, in order toceethe overall dimension of the optimization
problem, only the density value at grid points of so-calktive subdomains are considered actual degrees of
freedom. Among the active subdomains is a subse¢@dnstructionsubdomains, which are used in recovering
the value of the electron density in the nonreference subdomains. Thalattalledhassivesubdomains. If there
are no passive subdomains, no reconstruction process is involdetheaproposed approach becomes an OFDFT
domain partitioning scheme in which all the degrees of freedom are acddiontand the subdomains are treated
in parallel.

The value of the density in the passive subdomains is implicitly accounted thtbagnterpolation operator
acting on the reconstruction subdomains in a self-consistent manner. impiest representation, the reconstruc-
tion of the electron density in a passive subdonii(see Figure 1) is characterized by two sets of parameters: the
reconstruction weightg® (i), and the reconstruction vectdi¥* (i), where a Greek superscript is used to indicate
the index of a reconstruction subdomain. The reconstruction vectd@* (i) takes the point in subdomairD; to
its image in the reconstruction subdomain andy () is the weight with which the subdomaify, participates in
the reconstruction of the electron density in subdonBainGeneralizing this idea, iR is a function that depends



on the electron density, the proposedonstruction ansatezalls for a computation of the value &f at a pointr
that belongs to a passive subdomBinas a linear combination of values of the functiBrevaluated at suitably
chosen points in the reconstruction subdomains, which are determinetidreiee underlying near-periodicity of
the material assumption. Referring to FigureRl(r) in subdomairD; is expressed by interpolation in terms of
valuesR(r%), forr® € Yo, € {1,...,7}:

= > 0(i) R(r

a€R(1)

whereR (i) represents the union of all reconstruction subdoméinsvolved in the reconstruction of subdomain
D;, and the reconstruction weightsare determined based on the type of interpolation considered. The défarma
field factors into the reconstruction scheme. Concretely, in the propesedstruction ansatZ(®(r’,t)) is
replaced in passive subdomains with a linear combination of values in thesteaction subdomains taking into
account the underlying near-periodicity of the material:

Z (i 0+ T(i),1)) .

a€ER(i

HereT“ (1) is the reconstruction vector that defines in the reference configuratiaotresponding point out of
subdomainY,, that is engaged in the reconstruction®f In a perfect crystal the reconstruction vector would be
chosen based on the primitive vectors of the Bravais lattice (see, for dastgn Referring back to the example
presented in Figure IR (4) = R(5) = R(6) = {3,4}; in other words, the reconstruction of the subdomains
D4, Ds, andD; is based on values of the density in subdomainandY,. Similarly, R~!(«) represents the set
of all the subdomains that have the values of the density reconstructed basvalues fronY,; for instance,
R-1(3) = {3,4,5,6}, in other words, the reconstruction subdom¥inis implicated in the reconstruction of
Ds, Dy, Ds, andDg. In general, the subdomaii3 may be thought to be of identical shape, in which case the
interpolation approach is reminiscent of the gap-tooth methadhere the reference subdomains are the “teeth”.
Herein, however, the reconstruction by interpolation of the density is alsted out in the gaps, and not only at
the boundary of the teeth, because of the long-range electrostatic fitrsac

It is reasonable to expect that there will be parts of the nanostructueeemine reconstruction approach is not
applicable because of the breakdown of the near-periodicity assumptitiese cases, all subdomains spanning
such volumes will be active, effectively leading to a domain decompositioroapp to OFDFT calculations.

For mulation Framework

The calculation of electron enerdy, requires the evaluation of integrals of the form

= /@(r) dr

The integrand will be partitioned into two component§)(r) = R(p(r),r) L(r). R depends on the value of the
density at the location and possibly on the spatial componeritself (to simplify the notation, without any loss
of generality, this component will be denoted Byr)). The component does not depend on the electron density
p. For instance, in the case of the electron-nuclei interaction,

R(p(r),r) = pﬂ(;)
16) = Eve =~ [ ol Z‘|1‘—RAHdr:> Lo = 2 R

The other energies for the Thomas-Fermi-Dirac functional can be dasthis form as well, with the double
integral component being treated separately. With= ®(D°,¢),

£, _/R dr—/R ¥ 1)) L@, 1)) J (0, ) cr®



where J(r0,¢) = |det(Vo ®(r%,¢))|. The notation?(r’) = R(®(x% t)) and L(x?) = L(®(x°,¢))J(x*, t) will
be used; and although there is a time dependency involved, it will be omittdatduity. Likewise, the zero
superscript, which indicates that the integration is with respect to the initidigewation, will be dropped to
simplify the notation. With thisE, requires the computation of quantities like

I[0] = /R(r)L(r) dr.

DO

As far as the nomenclature is concerned, at a pojrthe R(r) component is reconstructed according to the
proposed ansatz and thus computed as a linear combination of functituetedaremotepoints. The component
L(r) is evaluated at thivcal pointr. This partitioning is used to compute the integf@b] in terms of electron
density values from the active subdomains using a suitably chosen tuaduae:

U

e = > X > wijrR(rijk)L(ri k)

i=1 7; ;e M(D;) keQ(i,7)
Uu

= > > wipR(rig) L(rik)

=1 keQ(i)

whereu is the total number of subdomains and,foe Q(i, j), r; ; 1/w; j 1, represent the quadrature points/weights
in cell 7; ; of meshM(D;) for computing the integral [©] on the subdomai;. Note that in order to keep the
notation simple, thg subscript associated with the cell has been dropped. Reconstructjpliesio getR(r; )

R(rip) = D 9*(0)R(rip + T(0) = Y 9°()R(xfy).

a€R(i) a€R(i)

This is the case when the same subdomains are involved in the reconstrdittievalue ofr; 5, for £ € Q(4) and
might not be the case if the partitioning of the overall domain in subdoni@iasdY,, is not done carefully.

In what follows theclout C¢ (i) of a noden in the meshM(Y,,) relative to the subdomaib; represents
the set of indices: for which the associated quadrature patp, € D;, when subjected to the reconstruction
translation, falls within a cell aM (Y,,) for whichn is a node. Using this notation and linear shape function-based
interpolation, we obtain

> wik L(rix) R(rik)
keQ()

p
= > wipL(rik) | 22 9*(9) > R(ry) on(rsy)

keQ(Z) a=1 HeN(T‘X(I‘Z”k))

= > 2 REp)9UE) X wik L(rig) @ (rdy,),

a€R(i) neEM(Yq) keCa (i)
wheret®(r; ;) is a function that returns the cell in the mesf(Y,,) in which the quadrature poimt ;, € D; falls
when subjected to the reconstruction translation, . &td) returns the set of node points associated with the cell
7. Typically, a noden has several cells that it belongs to, and a shape function is associashtpasr (node,
cell it belongs to). This aspect is acknowledged, but for simplicity the notatbes not reflect this dependency.
Defining

KO = 0%() Y wik L(rig) o (x5),
keCa (i)

rall]l = Y R

1ER™ ()

the dependency of the kernel at noden the subdomairy,, is explicitly indicated to depend on the expression of
the local function componett: <& = k2[L]. The integral and its derivative with respect the value of the electron
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density at a node of the meshM(Y,,) are expressed as

1e] = Y > spR(rp) =x[L] R,

a=1 neM(Ya)
I[0] a0,
Tﬁ% = Ky[L] ap(ﬁn),
where
R = [RHEL kb (Bl /I o ]
R[p] = |R(r] R(r} R(r? ree? ]
i = [ (e]), o R(EL ) JR(D), ... (ry(p))} :

Herey(a) represents the number of nodes in the reconstruction subddfpaiand R(r%) is the value of the
function R evaluated at the node of the meshM(Y,,). The notationR[5] emphasizes that this vector depends
on the value of the density but only at a discrete set of locations, that is, the nodes of the meati¥s ), for

a = 1,...,p. The kernel vector is constant and evaluated once; the v&ifrchanges with the value of the
density and in an iterative process should be evaluated at each iteration.

A matrix-vector notation describes the above procedure more concisetya Bubdomairb, and a recon-
struction subdomaitY,,, o € R(i), a quadrature matrix is defined to capture the concept of a clout assbciate
with a noden in Y,, relative to the subdomaiB;. Thus,Q*4? e R4(=9)xu¥(®) has as many rows as there are
quadrature pointg(i; ©O) in the subdomai;, and a number of columns equal to the number of nades in
the reconstruction subdomaffy, for o« € R(i). The superscrip® is necessary to differentiate between different
guadrature types in the case of a double integral, as will be the case shbglyotation suggests that this matrix
refers to the outermost integral; for a double integral a supersEigptised to refer to a quantity defined in relation
to the innermost integral. Note also that the number of quadrature pgint®) depends on what quadrature
rule is considered for integration and that the faatt(i) that indicates the weight of the subdomain in the
reconstruction of the subdoméiy is also rolled into the expression f@* . For a quadrature poimt ;. € D,
the entry(k, n) is nonzero provided € C¢(i). Therefore, the clout of a nodeis the set of rows with nonzero
entries in the column associated with this node. A nonzero entry assumesnthe fo

Q¥ Ok, n] = 9°(i) wi k o5 (xy).
Defining ~
LZO = [ L(r?l) L(rfq(i;o)) ’

then, fori € R~!(a), we have o 4
KO — L? Qou—z;O' (3)

Approximation of a double integral will now be established for the Coulomb rateg

J[p]:;//’m dr dr'.

L(r) = / p@ﬂ dr,

[’

Defining first

we can approximate the Coulomb integral as

=5 Y n Y 0 3 ) 25

a=1 neM(Yy) i€R"1(a keCg (i)
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Furthermore,

L) =Y S0 Wik ol

B=1 ’ITLEM(Y@)
where the notatior’, |1, k] indicates that the kernely,[i,k] corresponds to the local functice’ — r; x|t Using

the notation
Kb = E E 9 (i) w; g K2, [i, k] ©n(riy)
i€ER1(a) keCL(3)

leads to
1 T
Il = 5 Kp
K!'! K2 ... Kr
21 22 2p
K — K K ... K
Krl Kr2 .. KPP
K = Z Z Ko = [Kgg} n=1,...,y(a), m=1,...,y(8)

i€ER™Ha) JERTH(B)

with K*—%7<J yet to be defined. Corresponding to the quadrature point associatethevititer integralr?k, a
row vector is defined as

f_;jI[z, k] = { |I'Sk — I'§1|_1 |rf?k — riq(j;z)]_l ) (4)
Then, ' ) 4
KPIi, k) = LE[i, k] Q7T € RPV(),
Define L
o Li[i, 1]
LZvO?]vI — v
FI0: (.
L] [qu(,L, O)]
and .
kP9[0, 1]
kP [i] = — 150 T Qﬁ<—j;I'
KPI[i, q(i; 0)]
Then,

KO{(—’i,/BHj _ [Qaki;O]T []:i,(’);j,I] [Qﬁej;f} ) (5)
Note thatx®7[i] € RIGO)*¥(8) andK*—4/—7 ¢ R¥(®)*¥() Implementation details for the parallel evaluation

of the method’s associated kernels are discuss&d in

The Optimization Problem

The formalism introduced for the computation of an intedi&] = [ ©(r) dr hinges on the partitionin(r) =
R(r) L(r) and has been applied to the Thomas-Fermi-Dirac DFT, leading to the followiigipation problem:

. 4 N1 1
min Eror = —CXF;-pg + Crk pg + Kne + P+ 3 pTKp
0 = k-p—Ng
0 < p



Defining for an exponent € R, a diagonal matrix

D([p%] = diag ((p%)c,--w (Pé(l))cw--’(/%)cw-’ (P§<p)>c) ’

we obtain the gradient of the cost function

[N

5 4 1
VEror = g[p] = k" <3CFD[ﬁ ] — CXD[I&D + K+ 5/3T (K+K7).

3

The Hessian is evaluated as )
H[p] = Ha[p] + 5 (K +K7),
where
Hilp] = diag (H'[3],....H?[p]),
HY[)) = diag (r$ ( (3)7% = 5Cx (9)75) .,

e Ry )< CF( y(Ot)>_1 CX( y(a)>_§>>'

The value of the electron density should always remain positive, andfdheithe minimization is best ap-
proached in the framework of bound constrained optimization. Boundb@ned optimization problems (BCOPSs)
have the form

min{f(z):l <z <wu},
wheref : R™ — R is a nonlinear function with continuous first- and second-order derestthe vectors and
u are fixed, and the inequalities are taken componentwise. A classicalfesutvs that the bound-constrained
optimization problem has a unique solution on the feasible region

Q={reR": 1<z <u}

when the functiory : R™ — R is strictly convex. This result holds for unboundedand the components 6aind
u are allowed to be infinite. For the projection operator

di if x; € (li,ui)
[Tﬂd]i = min{di, 0} if T, = ll s
max{d;,0} if z; =

x* is a solution of the BCOP if and only if the projected gradigntV f(z*) = 0. Given a tolerance-, an
approximate solution to the BCOP is any 2 such that

[TV f(z)| < 7.

Note that this holds wheneveris sufficiently close tar*. Algorithms for solving these problems are usually
generalizations of well-known methods for unconstrained optimization. faonstrained optimization, Newton’s
method, for example, solves a linear system involving the Hessian matrix aideerivatives and the gradient
vector. Each iteration of active-set methods fixes a set of variablese@btheir bounds and solves an un-
constrained minimization problem using the remaining variables. A set of tigedthms used in conjunction
with the electronic structure computation problem is presented and disénéetihese algorithms are part of the
Toolkit for Advanced Optimization (TAO) library®36. TAO provides optimization software for the solution of sci-
entific applications on high-performance architectures. These applisaticlide minimizing energy functionals
that arise in differential equations and molecular geometry optimization. \fasioftware packages are available
for solving these problems, but TAO provides the portability and scalabilitgssary for parallel optimization on
high performance computers (Linux clusters, IBM BG/L, etc.).
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PROPOSED COMPUTATIONAL SETUP

Given a nanostructure of known atomic composition, not necessarily ntwniaaor single-crystal, the goal is to
determine the electron density distribution as well as the positions of the nueleis tthe mapping. Here we
do not consider dynamics of the nuclei.

As indicated in Fig. 2, the proposed solution has three principal modulegreépeocessingtage, theelec-
tronic problemand theionic problem Preprocessings carried out once at the beginning of the simulation. A
domain D is selected to include the nanostructure investigated. The partitioning’dhto « subdomains
D;,i = 1,...,u, is done to mirror the underlying periodicity of the structure. The subdonfajps through
D, () become the active subdomains and, as in Figure 1, they are denotgdttmpugh),. A set of values of
the electron density is required at the nodes of the discretization mesh; thegoéss for the electron density
could be an overlap of isolated atom electron densities throughout thetnastare or, when practical, could be
obtained based on periodic boundary conditions assumption by computing dtamainD; and then cloning for
the remaining domainB;. Preprocessingoncludes with the initialization of the deformation majo identity.

With a suitable norm, the new electron densitif is compared te", and the computation restarts the
electronic problemafter settingp™* = p"°* unless the corrected and initial values of the electron density are
close. This iterative process constitutes the first inner loop of the algorithm.

Theionic problemuses the newly computed electron density to reposition the nuclei. The nordiystam
in Eq. (2) provides the position of theepnuclej the other nuclei are positioned based on the quasicontinuum
paradigm according to Eq. (1). The nonlinear system is solved by ativiieraethod that leads to the second
inner loop, which has four steps: (a) evaluate the integral of Eq. (BEmwnecessary, evaluate its partial with
respect td;; (b) evaluate the double sum of Eq. (2), which is based on a partitioning aftthcture, and, when
necessary, evaluate its partial with respect to the position of the repaigermtoms; (c) carry out a quasi-Newton
step to update the positio#% of the M., representative nuclei; and (d) go back to (a) if no converge results.

The precision in determining the positions of the nuclei is directly influencettidyaccuracy of the electron
densityp(r). Thus, an important issue, not addressed by this work, is the sensifitiitg solution of the nonlinear
system in Eq. (2) with respect {gr). It remains to be determined what level of approximation of the electron
density suffices for solving the ionic problem at a satisfactory level ofi@cy. After determining the position of
the nuclei, the algorithm computes the new deformation mappiagcording to Eq. (1). If the overall change in
the position ofrepnucleiat the end of the ionic problem is smaller than a threshold value, the computias) s
otherwise the new distribution of the nuclei is the input to a new electronidgmrofsecond stage of the algorithm).
In summary, the algorithm passes through the preprocessing stagdtdahee.solves the electronic problem (the
first inner loop) and proceeds to the ionic problem (the second inne}.|ddpe outer loop (electronic problem,
followed by ionic problem) stops when there is no significant change in teiéiquo of therepnuclei

PRELIMINARY NUMERICAL RESULTS

The fact that quasicontinuum method represents a meaningful reductael apgproach has been established and
documented %19 The focus of the numerical experiments presented here is on modetimedas applied to
the electronic problem. The approach proposed for the solution of thiealecproblem has been investigated
in the context of undeformed topologies. In other words, for the defiomgradientVy ®(x%¢), J(r°,¢) =
det(Vo ®(x%, 1)) = 1.

String of Atoms Example

Our first example is a three-dimensional variation of the one dimensionalatedyzed in the previous section.
The size of each of the 3D subdomains surrounding a hydrogen atbm $5x 3 (all units henceforth are atomic
units). A full simulation with no reconstruction is provided as the referenbdgion. Two scenarios with seven
and five active subdomains were subsequently considered; all mestés mumerical experiment are uniform.
In the first scenario, the subdomaibs, D», D3, D7, Dy1, Di2, andD;3 were active; onlyD;, D;, andD;; were
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Active Subdomains 13 7 5
Number of Iterations 605 245 221
Total Energy -14.257 -14.256 -14.256

Table 1: Uniform mesh summary of the results. TAO-BLMVM optimization comstsaare10~° for absolute and
10~° for relative convergence tolerance.

used for reconstruction. In the second scenario, the subdomainy, D;, D, andD,3 were active; onlyD;,

D;, andD;2 were used for reconstruction. For this test, the number of nodes/cells atfire subdomains is as

follows: 28561/22464 for the nonreconstruction case (13/13), 182096 for the 7/13, and 10985/8640 for the
5/13 case. All meshes considered herein, uniform or variable, are npadihexahedrons. Figure 3 displays the
relative errors; shown are only the regions where the relative ertargsr than 5%. The results show a slight
improvement in the seven-subdomain case; as the number of active subslomaeeases, the quality of the results
improve. Because of the dimension reduction, the size of the optimization praldereases, thereby leading
to a reduction in the number of iterations. Moreover, each iteration is commaHyidess expensive. The large

relative errors are explained by the small values assumed by the eleetisitydaway from the nuclei where in

practice it is expected to be zero. This and the boundary artifacts expéesrctiumulation of the 5% relative error
isosurfaces far away from the nuclei and close to the boundary ofotbhéa domain. The differences in total

energy are small for both the 7 and 5 active subdomain cases (aboud®4).66e Table 1). The results reported
were obtained by running in parallel with 13 processes on a Linux cluster.

Slab of Atoms Example

Figure 4 shows the results obtained for the % subdomain 3D slab. Of the 25 subdomains considered for this
simulation, one subdomain per nucleus of a hydrogen atom, only nine submoshdarker color were considered
active and used for reconstruction purposes. Figure 4a displaytetiteoa density distribution on a mid-Z slice
for the reconstructed domain (9/25). Figure 4b displays the subdomaitstwf the slab, and Fig. 4c shows the
relative error produced through reconstruction. Compared to theerefe case, the relative error in the total value
of the electronic energy was 0.03%. The number of nodes/cells fér thé case with all subdomains active was
33275/25000. For the 9/25 reconstruction scheme, the number of unkneas reduced from 33275 to 11979.
The 3D simulation was run in parallel using 25 processes on a Linux cluster.

Nonuniform Mesh Results

Our third test investigated the effect of mesh adaptivity. An example corgistia string of five hydrogen atoms
was run in parallel on IBM BlueGene/L using five processes with no oaction. The solution on a uniform
mesh is plotted in Fig. 5a; the variable mesh solution is presented in Fig. 5b. glthodoth cases the number
of mesh points is comparable, the total energy in the nonuniform case hgistly smaller value, which indicates
that it corresponds to a more relaxed distribution of the electron densigypdék electron density values are also
higher for the variable mesh case because of a refined mesh capabfgwing fast variations in the vicinity of
the nuclei. The energy values are slightly different in the two situationsf@elifce of 12%, from -5.8 to -5.2). In
Fig. 5 a “smearing” effect is noticed in the constant-size mesh, where ltie/edy higher values of the electron
density occupy larger volumes but with lower peaks. Both simulations usarie gptimization settings (absolute
and relative convergence tolerance). In each of the five subdontaeénaumber of nodes/cells was 10999/7712
for the variable mesh and 11661/9216 for the uniform mesh.

The number of iterations in the nonuniform mesh case is much larger (2igipased to 212). However, the
nonuniform mesh results were obtained without using any acceleratidegstra he poor convergence speed can
be addressed by a multigrid approach or by providing Hessian informatiaich, while straightforward in the
proposed approach, is not implemented yet.
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When one brings into the picture the reconstruction component, the trenddhatiove persists. For the 13-
atom example run with 7 active subdomains, the uniform mesh size scenatmdedenergy of -14.257 in 245
iterations. The variable mesh case led to -15.54 in 3299 iterations, which rslanaf magnitude increase in the
number of iterations.

1 Conclusions

A methodology is proposed to address the CPU-intensive task of eletnotuse computation for a large system.
The approach combines a model reduction paradigm and parallel compwagiabilities to increase the size and
reduce the simulation time associated with large simulations. The entire domain ektritefirst meshed and
divided into subdomains. The kinetic, exchange correlation, Coulomlelantton-nuclei interaction energies are
expressed in terms of grid values of the electron density in a subsetoallsd-active subdomains. The resulting
form of the energy is minimized subject to the charge conservation coristiidie implementation leverages a
domain-decomposition paradigm, and for parallel simulation support it buildemof the MPICH2 library and
the Toolkit for Advanced Optimization. One salient feature of the prop@gguioach is that the function and
gradient evaluations, as well as the optimization stage, are run in paralkekketbnstruction errors were shown
to depend on the extent of model reduction. For a test problem consi$tmthcee-dimensional string of one-
electron atoms, the proposed approach led to a threefold reduction innifgenof iterations for convergence,
while maintaining small values of relative error for the total energy and therete density in the regions of
interest (boundary artifacts led to larger values in these boundarynggio

The method could be improved in three ways. First, and most importantly, moneeetyforms of the kinetic
and exchange and correlation energy functionals need to be chositheseffective core potentials for many elec-
tron atoms have to be implemented. Second, for larger problems, cut-afigeels and fast-multipole methods
need to be considered. These would ease memory limitations and allow the simofdi@e reconstruction tests
that go beyond the current proof-of-concept applications. Thielyeélsonstruction approach should be extended
to the DFT Kohn-Sham approach because it has a significantly largebase than OFDFT.
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APPENDI X

First Order Optimality Conditions
Theorem 1 Consider the optimization problem

min Eip = Ee + Eeyt + Enn,
{Ra}
subject to the constraint that for a nuclear configuratidR;} the energyF. is the electronic ground-state energy,
and the electron density that realizes this electronic ground energy additionally satisfies the chaogstraint
equation. Under these assumptions, the first-order optimality conditiortedaptimization problem lead to

8E’egvt aEnn

F. —
K= 3R ' ORg

=0,

whereF i is interpreted as the force acting on nucleids and

Zap(r
ea:t {RI} Z/ ea:t {RI} / Hr_RAH

o 5 |Re — Rall
Proof: The proof relies on the calculus of variations. Sip¢e) is determined to minimize the electronic energy,
there is a parametric dependency of this value on the ionic posjtian:= p(r; {R;}). After application of the
chain rule, the optimality conditions fdr;,; will read
0E. Op . 0E. O0E,,
op ORg ORg ORg
whereR i is the position of an arbitrary nucleus.
The optimality conditions for minimizing the electronic energy as a functional oéliaetron density lead to
0E, )
+222
dp dp
where is the Lagrange multiplier associated with the constraint

=0, (6)

=0, (7)

glpl =0

that the electron density must satisfy. For the problem at hand the chargergation equation results gify] =
[ p(r)dr — N.. Therefore, the variation gf(r) with respect taR - must satisfy

og Op
op ORg

Multiplying Eqg. (7) from the right by8 leads to5Ee ang = 0, which, substituted back into (6) yields the
desired optimality condition and thus completes the proof. Therefore, ébr macleusik in the system, the first

order optimality condition leads to

N I‘—RK RA—RK
p(r)m————=dr + Zpme————= =0.
/ ||I‘—RKH3 A= gyﬁ[{ HRA_RKH3
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Figure 1: Partitioning of the computational domai®, D; andDy; reconstruction subdomainB;, D», D;2, and
D5 active subdomaing)y, D5, Dg, Ds, Dy, andDyg passive subdomains.
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Figure 3: Relative error surface for the 13-subdomain scenariog (g)n7 and (b) 5 active subdomains.

parentheses we show the number of optimization iterations.
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Figure 4:5 x 5 slab simulation scenario results.
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Density
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(a) fixed mesh (-5.1829/212) (b) nonuniform mesh (-5.8705/2181)

Figure 5: Density distribution for the 5-subdomain example using (a) a umifoesh and (b) an adaptive mesh.
Above each result we show the associated mesh. In parenthesesvwieajiotal energy/number of iterations.
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